TCEQ Interoffice Memorandum

To: Tony Walker

Director, TCEQ Region 4, Dallas/Fort Worth

Alyssa Taylor

Special Assistant to the Regional Director, TCEQ Region 4, Dallas/Fort Worth

From: Allison Jenkins, MPH

Toxicology Division, Office of the Executive Director

Date: July 22, 2015

Subject: Toxicological Evaluation of Results from an Ambient Air Sample for Volatile

Organic Compounds Collected Downwind of the EnLink North Texas Gathering,

L.P. - White Settlement Compressor Station (Latitude 32.76995, Longitude -97.6039) near Fort Worth, Tarrant County, Texas

Sample Collected on June 16, 2015, Request Number 1506022 (Lab Sample

1506022-001)

Key Points

• Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern.

Background

On June 16, 2015, a Texas Commission on Environmental Quality (TCEQ) Region 4 air investigator collected a 30-minute canister sample (Lab Sample 1506022-001) downwind of the EnLink North Texas Gathering, L.P. - White Settlement Compressor Station near Fort Worth, Tarrant County, Texas (Latitude 32.76995, Longitude -97.6039) in response to a hand-held VOC reading. The investigator experienced no health effects or odors while sampling. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 78°F with a relative humidity of 78%, and winds were from the northeast (50°) at 0.9-2.8 miles per hour. The sample was collected 301-500 feet from the possible emission source (multiple sources). The nearest location where the public could have access was greater than 501 feet of the possible emission sources. The sample was sent to the TCEQ laboratory in Austin, Texas, and analyzed for a range of VOCs. The list of the target analytes that were evaluated in this review is provided in Attachment A. The VOC concentrations were reported in parts per billion by volume (ppbv) (Attachment B and Table 1). Please note that the available canister technology and analysis method cannot capture and/or analyze for all chemicals.

Tony Walker et al. Page 2 July 22, 2015

Results and Evaluation

Reported VOC concentrations were compared to TCEQ's short-term health- and/or welfare-based air monitoring comparison values (AMCVs) (Table 1). Short-term AMCVs are guidelines used to evaluate ambient concentrations of a chemical in air and to determine its potential to result in adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are set well below levels at which adverse health effects are reported in the scientific literature. If a chemical concentration in ambient air is less than its comparison value, no adverse health effects are expected to occur. If a chemical concentration exceeds its comparison value it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted.

All of the 84 VOCs were either not detected or were detected below their respective short-term AMCVs. Exposure to levels of VOCs measured in this sample would not be expected to cause short-term adverse health effects, adverse vegetative effects, or odors.

Please call me at (512) 239-0656 if you have any questions regarding this evaluation.

Tony Walker et al. Page 3 July 22, 2015

Attachment A

List of Target Analytes for Canister Samples

ethane
ethylene
acetylene
propane
propylene
dichlorodifluoromethane
methyl chloride
isobutane
vinyl chloride
1-butene
1,3-butadiene
n-butane
t-2-butene
bromomethane
c-2-butene

3-methyl-1-butene

isopentane

trichlorofluoromethane

1-pentene n-pentane isoprene t-2-pentene

1,1-dichloroethylene

c-2-pentene

methylene chloride 2-methyl-2-butene 2,2-dimethylbutane cyclopentene 4-methyl-1-pentene
1,1-dichloroethane
cyclopentane
2,3-dimethylbutane
2-methylpentane
3-methylpentane

2-methyl-1-pentene + 1-hexene

n-hexane chloroform t-2-hexene c-2-hexene

1,2-dichloroethane methylcyclopentane 2,4-dimethylpentane 1,1,1-trichloroethane

benzene

carbon tetrachloride

carbon tetrachloride
cyclohexane
2-methylhexane
2,3-dimethylpentane
3-methylhexane
1,2-dichloropropane
trichloroethylene
2,2,4-trimethylpentane
2-chloropentane

n-heptane

c-1,3-dichloropropylene methylcyclohexane

t-1,3-dichloropropylene 1,1,2-trichloroethane 2,3,4-trimethylpentane toluene

2-methylheptane 3-methylheptane 1,2-dibromoethane

n-octane tetrachloroethylene chlorobenzene ethylbenzene m & p-xylene styrene

1,1,2,2-tetrachloroethane

o-xylene n-nonane isopropylb

isopropylbenzene n-propylbenzene m-ethyltoluene p-ethyltoluene

1,3,5-trimethylbenzene

o-ethyltoluene

1,2,4-trimethylbenzene

n-decane

1,2,3-trimethylbenzene m-diethylbenzene p-diethylbenzene n-undecane Tony Walker et al. Page 4 July 22, 2015

Attachment B

7/8/2015

Texas Commission on Environmental Quality

Laboratory and Quality Assurance Section P.O. Box 13087, MC-165 Austin, Texas 78711-3087 (512) 239-1716

y Analysis Result Number: 1506022	s	
Region: T04	Date Rec	eived: 6/19/2015
City	County	Facility Type
Fort Worth	Tarrant	
Date & Time Sam	pled: 06/16/15	mpled by: Megan Horton 09:17:00 Valid Sample: Yes
ñed Method TO-15		
lytical procedures ple	ase contact tl	ne laboratory manager at
	Region: T04 City Fort Worth Sample Number: 1506022 Date & Time Samute downwind sample using the desired procedures pleading by tical procedures pleading to the desired procedures pleading	Region: T04 Date Rec City County Fort Worth Tarrant Sample Number: 1506022-001 Sample & Time Sampled: 06/16/15 ate downwind sample using OFC-004. Tied Method TO-15 sapable of measuring all compound lytical procedures please contact the ects evaluation of these data, please

Laboratory Analysis Results

Request Number: 1506022 Analysis Code: AP001VOC

Lab ID			150	6022-001						
Field ID				-004-0615						
Canister ID	+			10277						
		1	<u>`</u>	Analysis				Γ	Analysis	
Compound	Cone.	SDL	SQL	Date	Flags**	Conc.	SDL	SQL	Date	Flags**
ethano	430	4.9	12	6/27/2015	T,D2					
ethylene	1.3	1.0	2.4	6/25/2015	L,T,D1					
ncetylene	ND	1.0	2.4	6/25/2015	T,D1		<u> </u>			
propane	100	1.0	2.4	6/25/2015	T,D1					
propylene	ND	1.0	2.4	6/25/2015	T,DI					
fichlorodifluoromethane	0.52	0.40	1.2	6/25/2015	L _i D1					
nethył obloride	0.76	0.40	1.2	6/25/2015	L,D1					
sobutane	18	0.46	2.4	6/25/2015	D1					
inyl chloride	ND	0.34	1.2	6/25/2015	DI					
-butene	ND	0,40	1,2	6/25/2015	D1					
,3-butadiene	ND	0.54	1.2	6/25/2015	D1					
-butane	2.0	0.40	2.4	6/25/2015	D1				1	
-2-butene	ND	0.36	1.2	6/25/2015	D1	1			i	
romomethene	ND	0.54	1,2	6/25/2015	D1	İ				
-2-butene	ND	0.54	1.2	6/25/2015	D1					
-methyl-1-butene	ND	0.46	1.2	6/25/2015	D1	<u> </u>				
sopenfane	6.5	0.54	4.8	6/25/2015	D1	1				
richlorofluoromethane	0.26	0.58	1.2	6/25/2015	J.D1	<u> </u>				
-pentene	ND	0.54	1.2	6/25/2015	DI		***************************************			
-pentane	3.8	0.54	4.8	6/25/2015	L,DI	-	_			
soprene	ND	0.54	1.2	6/25/2015	Di					
2-pentene	ND	0.54	2.4	6/25/2015	D1	1				
,1-dichloroethylene	ND	0.36	1.2	6/25/2015	D1	1				
-2-pentene	ND	0.50	2.4	6/25/2015	D1	1				
nethylene ohloride	0.09	0.28	1.2	6/25/2015	J,D1					
-methy(-2-butene	ND	0.46	1.2	6/25/2015	DI	1				
,2-dimethylbutane	ND	0.42	1.2	6/25/2015	DI					
yelopeniene	ND	0.40	1.2	6/25/2015	DI					
-methyl-1-pentene	ND	0.44	2.4	6/25/2015	DI				-	
,1-dichloroethane	ND	0.38	1.2	6/25/2015	DI	1			-	
yclopentane	ND	0.54	1.2	6/25/2015	D1	1				
,3-dimethylbutane	ND	0.56	2.4	6/25/2015	D1					
-methylpeniane	1.2	0.54	1.2	6/25/2015	D1	1				
-methylpentane	0.82	0.46	1.2	6/25/2015	L _D D1					
-methyl-1-pentene + I-hexene	ND	0.40	4.8	6/25/2015	Di	1.				
-hexane	1.4	0.40	2.4	6/25/2015	L ₂ D1	+ -				
hloroform	ND I	0.42	1.2	6/25/2015	DI					
2-hexene	ND	0.54	2.4	6/25/2015	DI	-				
-2-nexene	ND	0.54	2.4	6/25/2015	D1					
,2-dichloroethane			-,-							
	ND:	0.54	1,2	6/25/2015	D]					
ethyleyolopentane	0.21	0.54	2.4	6/25/2015	J,D1					
4-dimethylpentane	ND	0.54	2.4	6/25/2015	D1	+				
1,1-trichloroethane	ND	0,52	1.2	6/25/2015	D1					
enzene	0.72	-0:54-	1:2	6/25/2015	1,01					
arbon tetrachloride	ND	0.54	1.2	6/25/2015	D1	1			170,070,00	v
yclohexane	ND	0.48	1.2	6/25/2015	Dt					
-methylhexane 3-dimethylpentane	ND	0.54	1.2	6/25/2015	D1 D1					

Laboratory Analysis Results

Request Number: 1506022 Analysis Code: AP001VOC

Note: Results are reported in t	units of ppbv									
Lab ID			1506	022-001						
Compound	Cons.	SDL	SQL	Analysis Date	Flags**	Cone.	SDL	SQL	Analysis Date	Flags**
3-methylhexane	0.44	0.40	1.2	6/25/2015	L _s D1					
1,2-dichloropropane	ND	0.34	1.2	6/25/2015	ÐI					
trichloroethylene	CUM	0.58	1.2	6/25/2015	DI					
2,2,4-trimethylpentane	ND	0.48	1.2	6/25/2015	DI					
2-chloropentane	ND	0.54	1.2	6/25/2015	DI					
n-heptane	-0.50	0.50	2.4	6/25/2015	L,D1					
c-1,3-dichloropropylene	ND	0.40	1.2	6/25/2015	Ðί					
methylcyclohexane	0.56	0.52	2.4	6/25/2015	L _b D1					
t-1,3-dichloropropylene	ND	0.40	1.2	6/25/2015	DL					
1,1,2-trichloroethane	ND	0.42	1.2	6/23/2015	DI	1				
2,3,4-trimethylpentane	ND	0.48	2.4	6/25/2015	DI					
toluene	1.4	0.54	1.2	6/25/2015	Dt					
2-methylheptane	0.26	0.40	2.4	6/25/2015	J,D1					
3-methylhoptane	0.11	0.46	2.4	6/25/2015	J,D1	T				
1,2-dibromoethane	ND	0.46	1.2	6/25/2015	Dl				i	
n-octane	0.24	0.38	2.4	6/25/2015	J,D1					
tetrachloroethylene	ND	0.48	1.2	6/25/2015	Di					
shlorobenzene	ND	0.54	1.2	6/25/2015	D1					
othylbenzene	NID	0.54	2.4	6/25/2015	Dl	i				
m & p-xylene	0.57	0.54	4.8	6/25/2015	LDI					
styrene	0.05	0.54	2.4	6/25/2015	J,D1					
1,1,2,2-tetrachloroethane	ND	0.40	1.2	6/25/2015	DI					
o-xylene	0.11	0.54	2.4	6/25/2015	J,D1	i				
n-nonane	ND	0.44	1.2	6/25/2015	D1	1				
isopropylbenzene	0.02	0.48	12	6/25/2015	J,D1	i				
n-propylberizene	ND	0.54	1.2	6/25/2015	D1	i			i	
m-ethyltoluene	ND	0.22	1.2	6/25/2015	D1	Î			i	
p-othyltoluene	0.01	0.32	2.4	6/25/2015	J,D1				i	
1,3,5-trimethylbenzene	0.02	0.50	2.4	6/25/2015	J,D1					
o-ethyltoluene	ND	0.26	2.4	6/25/2015	DI				i i	
1,2,4-trimethylbenzene	0.04	0.54	1.2	6/25/2015	J,D1	1				
n-decane	0.02	0.54	2.4	6/25/2015	J,D1	1				
1,2,3-trimethy/benzene	ND	0.54	1.2	6/25/2015	DI	1				
m-diethylbenzene	ND	0.54	2.4	6/25/2015	DI					
p-diethylbenzene	ND	0.54	1.2	6/25/2015	Dí	1				
-undecane	ND	0.54	2.4	6/25/2015	DI	1			i	

Tony Walker et al. Page 7 July 22, 2015

Laboratory Analysis Results Request Number: 1506022 Analysis Code: AP001VOC

Qualifier Notes:

- ND not detected
- NQ concentration can not be quantified due to possible interferences or occlutions.
- SDL Sample Detection Limit (Limit of Detection adjusted for dilutions).
 SQL Sample Quantitation Limit (Limit of Quantitation adjusted for dilution).
 INV Invalid.
- I Reported concentration is below SDL,
- L Reported concentration is at or above the SDL and is below the lower limit of quantitation.

- B Reported concentration exceeds the upper limit of instrument calibration.
 M Result modified from previous result.
 T- Data was not confirmed by a confirmational analysis. Compound and/or results is tentatively identified.
 F Established acceptance criteria was not met due to factors outside the laboratory's control.
- H Not all associated hold time specifications were met. Data may be biased.
- C Sample received with a missing or broken custody seal.
 R Sample received with a missing or incomplete chain of custody.
 1 Sample received without a legible unique identifier.
- G Sample received in an improper container.
- U Sample received with insufficient sample volume.
- W Sample recevied with insufficient preservation.

Quality control notes for AP001 VOC samples,

- DI-Sample concentration was calculated using a dilution factor of 4.
- D2-Sample concentration was calculated using a dilution factor of 19.68.

Tony Walker et al. Page 8 July 22, 2015

Table 1. Comparison of Monitored Concentrations in Lab Sample 1506022-001 to TCEQ Short-Term AMCVs

Lab Sample ID	1506022-001					
Compound	Odor AMCV (ppb _v)	Short-Term Health AMCV (ppb _v)	SQL (ppb _v)	Concentrations (ppb _v)	Flags	SDL (ppb _v)
1,1,1-Trichloroethane	380,000	1,700	1.2	ND	D1	0.52
1,1,2,2-Tetrachloroethane	7,300	10	1.2	ND	D1	0.4
1,1,2-Trichloroethane	Not Available	100	1.2	ND	D1	0.42
1,1-Dichloroethane	Not Available	1,000	1.2	ND	D1	0.38
1,1-Dichloroethylene	Not Available	180	1.2	ND	D1	0.36
1,2,3-Trimethylbenzene	Not Available	250	1.2	ND	D1	0.54
1,2,4-Trimethylbenzene	140	250	1.2	0.04	J,D1	0.54
1,2-Dibromoethane	Not Available	0.5	1.2	ND	D1	0.4
1,2-Dichloroethane	6,000	40	1.2	ND	D1	0.54
1,2-Dichloropropane	250	100	1.2	ND	D1	0.34
1,3,5-Trimethylbenzene	Not Available	250	2.4	0.02	J,D1	0.5
1,3-Butadiene	230	1,700	1.2	ND	D1	0.54
1-Butene	360	27,000	1.2	ND	D1	0.4
1-Pentene	100	2,600	1.2	ND	D1	0.54
2,2,4-Trimethylpentane	670	750	1.2	ND	D1	0.48
2,2-Dimethylbutane (Neohexane)	Not Available	1,000	1.2	ND	D1	0.42
2,3,4-Trimethylpentane	Not Available	750	2.4	ND	D1	0.48
2,3-Dimethylbutane	420	990	2.4	ND	D1	0.56
2,3-Dimethylpentane	4,500	850	1.2	ND	D1	0.52
2,4-Dimethylpentane	940	850	2.4	ND	D1	0.54
2-Chloropentane (as chloroethane)	Not Available	240	1.2	ND	D1	0.54
2-Methyl-1-Pentene +1-Hexene	140	500	4.8	ND	D1	0.4
2-Methyl-2-Butene	Not Available	2,600	1.2	ND	D1	0.46
2-Methylheptane	110	750	2.4	0.2	J,D1	0.4
2-Methylhexane	420	750	1.2	ND	D1	0.54

Tony Walker et al. Page 9 July 22, 2015

Lab Sample ID	1506022-001					
Compound	Odor AMCV (ppb _v)	Short-Term Health AMCV (ppb _v)	SQL (ppb _v)	Concentrations (ppb _v)	Flags	SDL (ppb _v)
2-Methylpentane (Isohexane)	7,000	850	1.2	1.2	D1	0.54
3-Methyl-1-Butene	250	8,000	1.2	ND	D1	0.46
3-Methylheptane	1,500	750	2.4	0.11	J,D1	0.46
3-Methylhexane	840	750	1.2	0.44	L,D1	0.4
3-Methylpentane	8,900	1,000	1.2	0.82	L,D1	0.46
4-Methyl-1-Pentene (as hexene)	140	500	2.4	ND	D1	0.44
Acetylene	Not Available	25,000	2.4	ND	T,D1	1
Benzene	2,700	180	1.2	0.72	L,D1	0.54
Bromomethane (methyl bromide)	Not Available	30	1.2	ND	D1	0.54
c-1,3-Dichloropropylene	Not Available	10	1.2	ND	D1	0.4
c-2-Butene	2,100	15,000	1.2	ND	D1	0.54
c-2-Hexene	140	500	2.4	ND	D1	0.54
c-2-Pentene	Not Available	2,600	2.4	ND	D1	0.5
Carbon Tetrachloride	4,600	20	1.2	ND	D1	0.54
Chlorobenzene (phenyl chloride)	1,300	100	1.2	ND	D1	0.54
Chloroform (trichloromethane)	3,800	20	1.2	ND	D1	0.42
Cyclohexane	2,500	1,000	1.2	ND	D1	0.48
Cyclopentane	Not Available	1,200	1.2	ND	D1	0.54
Cyclopentene	Not Available	2,900	1.2	ND	D1	0.4
Dichlorodifluoromethane	Not Available	10,000	1.2	0.52	L,D1	0.4
Ethane	Not Available	Simple Asphyxiant*	12	430	T,D2	4.9
Ethylbenzene	170	20,000	2.4	ND	D1	0.54
Ethylene	270,000	500,000	2.4	1.3	L,T,D1	1
Isobutane	Not Available	33,000	2.4	18	D1	0.46
Isopentane (2-methylbutane)	1,300	68,000	4.8	6.5	D1	0.54
Isoprene	48	20	1.2	ND	D1	0.54

Tony Walker et al. Page 10 July 22, 2015

Lab Sample ID	1506022-001					
Compound	Odor AMCV (ppb _v)	Short-Term Health AMCV (ppb _v)	SQL (ppb _v)	Concentrations (ppb _v)	Flags	SDL (ppb _v)
Isopropylbenzene (cumene)	48	500	1.2	0.02	J,D1	0.48
m & p-Xylene (as mixed isomers)	80	1,700	4.8	0.57	L,D1	0.54
m-Diethylbenzene	70	460	2.4	ND	D1	0.54
Methyl Chloride (chloromethane)	Not Available	500	1.2	0.76	L,D1	0.4
Methylcyclohexane	150	4,000	2.4	0.56	L,D1	0.52
Methylcyclopentane	1,700	750	2.4	0.21	J,D1	0.54
Methylene Chloride (dichloromethane)	160,000	3,500	1.2	0.09	J,D1	0.28
m-Ethyltoluene	18	250	1.2	ND	D1	0.22
n-Butane	1,200,000	92,000	2.4	21	D1	0.4
n-Decane	620	1,750	2.4	0.02	J,D1	0.54
n-Heptane	670	850	2.4	0.5	L,D1	0.5
n-Hexane	1,500	1,800	2.4	1.4	L,D1	0.4
n-Nonane	Not Available	2,000	1.2	ND	D1	0.44
n-Octane	1,700	750	2.4	0.24	J,D1	0.38
n-Pentane	1,400	68,000	4.8	3.8	L,D1	0.54
n-Propylbenzene	48	500	1.2	ND	D1	0.54
n-Undecane	870	550	2.4	ND	D1	0.54
o-Ethyltoluene	74	250	2.4	ND	D1	0.26
o-Xylene	380	1,700	2.4	0.11	J,D1	0.54
p-Diethylbenzene	70	460	1.2	ND	D1	0.54
p-Ethyltoluene	8.1	250	2.4	0.01	J,D1	0.32
Propane	1,500,000	Simple Asphyxiant*	2.4	100	T,D1	1
Propylene	13,000	Simple Asphyxiant*	2.4	ND	T,D1	1
Styrene	25	5,100	2.4	0.05	J,D1	0.54
t-1,3-Dichloropropylene	Not Available	10	1.2	ND	D1	0.4
t-2-Butene	2,100	15,000	1.2	ND	D1	0.36

Tony Walker et al.

Page 11

July 22, 2015

Lab Sample ID	1506022-001	1506022-001						
Compound	Odor AMCV (ppb _v)	Short-Term Health AMCV (ppb _v)	SQL (ppb _v)	Concentrations (ppb _v)	Flags	SDL (ppb _v)		
t-2-Hexene	140	500	2.4	ND	D1	0.54		
t-2-Pentene	Not Available	2,600	2.4	ND	D1	0.54		
Tetrachloroethylene	770	1,000	1.2	ND	D1	0.48		
Toluene	920	4,000	1.2	1.4	D1	0.54		
Trichloroethylene	3,900	100	1.2	ND	D1	0.58		
Trichlorofluoromethane	5,000	10,000	1.2	0.26	J,D1	0.58		
Vinyl Chloride	Not Available	26,000	1.2	ND	D1	0.34		

^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ppbv - Parts per billion by volume.

ND - Not detected.

NQ - Concentration can not be quantified due to possible interferences or coelutions.

SDL - Sample Detection Limit (Limit of Detection adjusted for dilution).

SQL – Sample Quantitation Limit (Limit of Quantitation adjusted for dilution).

INV - Invalid.

J - Reported concentration is below SDL.

L - Reported concentration is at or above the SDL and is below the lower limit of quantitation.

E - Reported concentration exceeds the upper limit of instrument calibration.

M - Result modified from previous result.

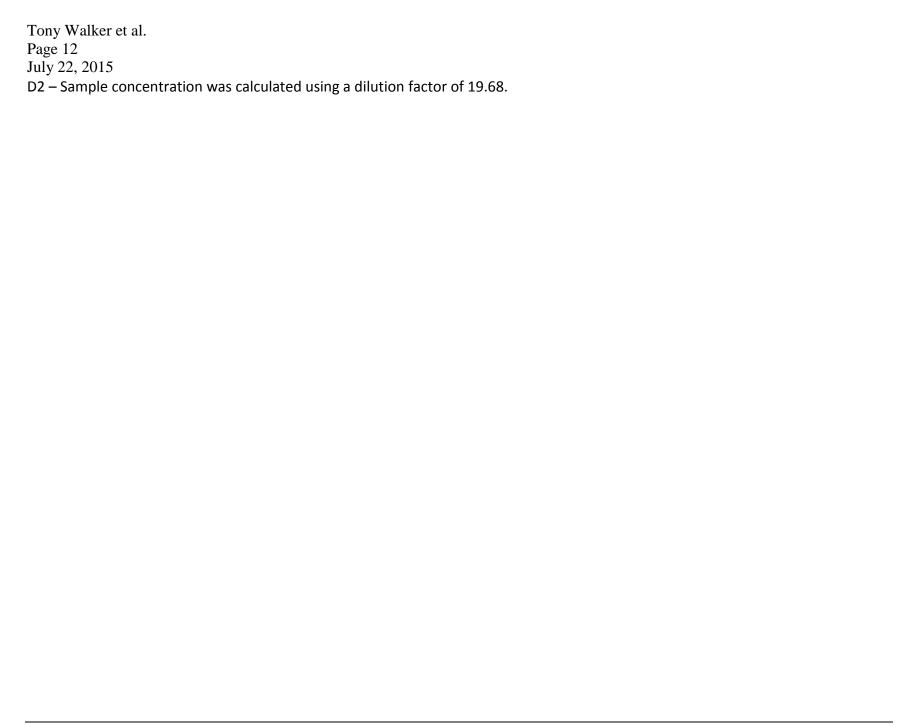
T - Data was not confirmed by a confirmational analysis. Data is tentatively identified.

F - Established acceptance criteria were not met due to factors outside the laboratory's control.

H – Not all associated hold time specifications were met. Data may be biased.

C - Sample received with a missing or broken custody seal.

R - Sample received with a missing or incomplete chain of custody.


I - Sample received without a legible unique identifier.

G - Sample received in an improper container.

U - Sample received with insufficient sample volume.

W - Sample received with insufficient preservation.

D1 - Sample concentration was calculated using a dilution factor of 4.

Tony Walker et al. Page 13 July 22, 2015

Table 2. TCEQ Long-Term Air Monitoring Comparison Values (AMCVs)

Please Note: The long-term AMCVs are provided for informational purposes only because it is scientifically inappropriate to compare short-term monitored values to the long-term AMCV.

Compound	Long-Term Health AMCV (ppb _v)	Compound	Long-Term Health AMCV (ppb _v)
1,1,1-Trichloroethane	940	Cyclopentane	120
1,1,2,2-Tetrachloroethane	1	Cyclopentene	290
1,1,2-Trichloroethane	10	Dichlorodifluoromethane	1,000
1,1-Dichloroethane	100	Ethane	Simple Asphyxiant*
1,1-Dichloroethylene	86	Ethylbenzene	450
1,2,3-Trimethylbenzene	25	Ethylene**	5,300
1,2,4-Trimethylbenzene	25	Isobutane	2,400
1,2-Dibromoethane	0.05	Isopentane (2-methylbutane)	8,000
1,2-Dichloroethane	1	Isoprene	2
1,2-Dichloropropane	10	Isopropylbenzene (cumene)	50
1,3,5-Trimethylbenzene	25	m & p-Xylene (as mixed isomers)	140
1,3-Butadiene	9.1	m-Diethylbenzene	46
1-Butene	2,300	Methyl Chloride (chloromethane)	50
1-Pentene	Not Available	Methylcyclohexane	400
2,2,4-Trimethylpentane	75	Methylcyclopentane	75
2,2-Dimethylbutane (Neohexane)	100	Methylene Chloride (dichloromethane)	100
2,3,4-Trimethylpentane	75	m-Ethyltoluene	25
2,3-Dimethylbutane	99	n-Butane	2,400
2,3-Dimethylpentane	85	n-Decane	175
2,4-Dimethylpentane	85	n-Heptane	85
2-Chloropentane (as chloroethane)	24	n-Hexane	190
2-Methyl-1-Pentene +1-Hexene	50	n-Nonane	200

Tony Walker et al. Page 14 July 22, 2015

Compound	Long-Term Health AMCV (ppb _v)	Compound	Long-Term Health AMCV (ppb _v)
2-Methyl-2-Butene	Not Available	n-Octane	75
2-Methylheptane	75	n-Pentane	8,000
2-Methylhexane	75	n-Propylbenzene	50
2-Methylpentane (Isohexane)	85	n-Undecane	55
3-Methyl-1-Butene	800	o-Ethyltoluene	25
3-Methylheptane	75	o-Xylene	140
3-Methylhexane	75	p-Diethylbenzene	46
3-Methylpentane	100	p-Ethyltoluene	25
4-Methyl-1-Pentene (as hexene)	50	Propane	Simple Asphyxiant*
Acetylene	2,500	Propylene	Simple Asphyxiant*
Benzene	1.4	Styrene	110
Bromomethane (methyl bromide)	3	t-1,3-Dichloropropylene	1
c-1,3-Dichloropropylene	1	t-2-Butene	690
c-2-Butene	690	t-2-Hexene	50
c-2-Hexene	50	t-2-Pentene	Not Available
c-2-Pentene	Not Available	Tetrachloroethylene***	3.8
Carbon Tetrachloride	2	Toluene	1,100
Chlorobenzene (phenyl chloride)	10	Trichloroethylene	10
Chloroform (trichloromethane)	2	Trichlorofluoromethane	1,000
Cyclohexane	100	Vinyl Chloride	0.45

^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations.

^{**}Long-term vegetation AMCV for Ethylene is 30 ppb.

^{***}Long-term vegetation AMCV for Tetrachloroethylene is 12 ppb.